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Abstract
A novel copper (II) complex of Schiff base prepared through condensation between 2-formyl-17-deoxyestrone and
D-glucosamine was synthesized and characterized. Fluorescence spectroscopy was conducted to assess their binding ability
with CT-DNA. The results showed that the copper (II) complex could bind to DNA with a weak intercalative mode.
The interaction between the copper (II) complex and DNA was also investigated by gel electrophoresis. Interestingly, we
found that the complex could cleave plasmid DNA (pUC19) to nicked and linear forms through an oxidative mechanism
without the use of exogenous agents.
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Introduction

Investigations on the interaction between transition

metal complexes and DNA has attracted much interest

due to the potential uses of these metal complexes as

chemotherapeutic drugs and tools in molecular biology

[1–5]. Many kinds of metal complexes were syn-

thesized in order to study their abilities of recognition

and cleavage toward DNA [6–13]. Among them,

Schiff base metal complex is a kind of attractive

reagents due to their special activities in pharmacology

and physiology. People paid a great interest in the

synthesis, structures and DNA cleavage abilities of

Schiff base metal complexes in recent years [14–21].

However, in most cases, the cleavage reactions of DNA

catalyzed by Schiff base metal complexes must be

initiated by exogenous agents such as H2O2, ascorbic

acid, mercaptopropionic acid or light, which limited

their in vitro applications. Therefore, self-activating

systems that require no further activation to induce

the cleavage of DNA were desirable. Recently, it has

been reported that the Schiff base metal complexes

containing hydroxyl-rich ligands were extremely effi-

cient catalysts in promoting the cleavage of plasmid

DNA in the absence of oxygen or additional reductives

[22–24].

D-Glucosamine is a natural product with polyhy-

droxyl and amino groups. It could kill tumor cells with

high selectivity [25]. To our best knowledge, the

clinical and endocrinological applications of estrogenic

steroids and its derivatives have evoked widespread

interest recently [26,27]. In this paper, we designed

and synthesized a novel copper (II) complex with
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Schiff base derived from estrone and D-glucosamine.

The complex was then used as artificial nuclease

to bind DNA and catalyzed the cleavage of DNA.

The preliminary mechanism of the catalyzed cleavage

process was also discussed.

Materials and methods

17-Deoxyestrone (2) and 3-O-methoxy-17-deoxyes-

trone (3) were prepared according to the literature

[28]. All other reagents were purchased from

commercial sources and used without further purifi-

cation. Melting points were determined using a micro-

melting point apparatus without any corrections.

Elemental analyses were performed using a Carlo-

Elba1106 elemental analytical instrument. IR spectra

were recorded on a Shimadzu FTIR-4200 spec-

trometer as KBr pellets in the range of 4000–

400 cm21. HRMS spectral data were recorded on

Bruker Daltonics Bio TOF. 1H NMR spectral data

were measured on a Varian INOVA-400 spectrometer

and chemical shifts in ppm are reported relative to

internal Me4Si. Fluorescence spectra were recorded

on a LS55 spectrofluorometer. Electrophoresis grade

agarose and plasmid DNA (pUC19) were purchased

from Takara Biotechnology Company.

Preparation of 2-formyl-3-O-methoxy-17-deoxyestrone (4)

Phosphorus oxychloride (5.55 mL, 58.7 mmol) was

added to N, N-dimethylformamide (5.5 mL) at 08C.

After stirring for 0.5 h, 3-O-methoxy-17-deoxyestrone

(3) (1.50 g, 5. 55 mol) was added and the resulting

mixture was heated carefully under 808C for 8 h.

The mixture was then cooled to room temperature,

poured into crushed ice, and stirred overnight.

The resulting precipitate was collected via vacuum

filtration. The crude product was purified by column

chromatography (petroleum ether/ diethyl ether, 15:1)

to provide 1.25 g of the title product (4) as a pale yellow

solid. Yield 73%; m.p: 175–1768C. IR (KBr, cm21):

2923, 2864, 1671, 1566, 1496, 1269. 1H NMR

(CDCl3, d, ppm): 0.74 (s, 3H), 1.10–1.93 (m, 13H),

2.16–2.28 (m, 2H), 2.76–2.88 (m, 2H), 3.84 (s, 3H),

6.67 (s, 1H), 7.76 (s, 1H), 10.39 (s, 1H). Anal. Calcd.

for C20H26O2: C, 80.50; H, 8.78. Found: C, 80.62; H,

8.56%. HRMS of C20H26O2: 299.2011[M þ H]þ,

found: 299.1857[M þ H]þ.

Preparation of 2-formyl-17-deoxyestrone (5)

At 2788C, to a solution of 2-formyl-3-O-methoxy-17-

deoxyestrone (4) (1.20 g, 4.03 mmol) in dry CH2Cl2
(50 mL) was slowly added a solution of BBr3

(0.25 mL) in dry CH2Cl2 (15 mL). The cooling bath

was removed after 1.5 h and the reaction mixture was

stirred under room temperature for 12 h. The mixture

was quenched with ice water (10 mL). The aqueous

phase was extracted with CH2Cl2 (3 £ 30 mL). The

combined organic phases were subsequently washed

with brine and dried. The solvent was removed under

reduced pressure, and the residue was purified by

column chromatography (petroleum ether/ diethyl

ether, 15:1) to provide 0.98 g of the title product (5) as

a white solid. Yield 88%; m.p: 104–105 8C. IR (KBr,

cm21): 3428, 2927, 2857, 1648, 1566, 1487, 1238.
1H NMR (CDCl3, d, ppm): 0.70 (s, 3H), 1.10–1.93

(m, 13H), 2.16–2.28 (m, 2H), 2.76–2.87 (m, 2H),

6.70 (s, 1H), 7.43 (s, 1H), 9.81 (s, 1H), 10.78 (s, 1H).

Anal. Calcd. for C19H24O2: C, 80.24; H, 8.51.

Found: C, 80.42; H, 8.42%. HRMS of C19H24O2:

285.1855[M þ H]þ, found: 285.1315[M þ H]þ.

Preparation of Schiff base compound (6)

To a solution of D-glucosamine (0.200 g, 0.56 mmol)

in methanol (5 mL) was added a solution of 2-formyl-

17-deoxyestrone (5) (0.150 g, 0.87 mmol) in metha-

nol (5 mL) and sodium bicarbonate (0.07 g,

0.80 mmol) under stirring. The solution was stirred

at room temperature for 24 h and then concentrated in

vacuo. The resulting precipitate was filtered off,

washed with cold methanol, and dried. Recrystalliza-

tion from ethanol provided 0.16 g of the title product

(6) as a yellow solid. Yield 65%; m.p: 240–2418C. IR

(KBr, cm21): 3425, 2923, 2852, 1633, 1573, 1083.
1H NMR(DMSO-d6, d, ppm): 0.75 (s, 3H), 1.28–

1.81 (m, 13H), 2.11–2.28 (m, 2H), 2.48 (s, 4H),

2.76–2.88 (m, 2H), 3.13–3.35 (m, 4H), 3.68–3.71

(d, 2H), 4.65–4.67 (d, 1H), 6.54 (s, 1H), 7.33

(s, 1H), 8.31 (s, 1H). Anal. Calcd. for C25H35NO6:

C, 67.39; H, 7.92; N, 3.14. Found: C, 67.72; H, 7.53;

N, 3.25%. HRMS of C25H35NO6: 446.2543[M þ

H]þ, found: 446.2542[M þ H]þ.

Preparation of Schiff base copper (II) complex (7)

The Schiff base (0.096 g, 0.27 mmol) was dissolved in

methanol (30 mL) at room temperature and cupric

acetate (0.018 g, 0.13 mmol) was then added with

stirring. The solution was stirred at room temperature

overnight and then concentrated in vacuum.

The resulting precipitate was filtered off, washed

with methanol. Recrystallization from methanol

provided 0.10 g of the title complex (7) as a green

solid. Yield 71%; m.p: 2208C (decomposition). IR

(KBr, cm21): 3412, 2926, 2865, 1623, 1573, 1042.

Anal. Calcd. for C25H35CuNO7: C, 57.18; H, 6.72;

N, 2.67. Found: C, 57.55; H, 6.43; N, 2.54%. HRMS

of C25H35CuNO7: 525.1788[M þ H]þ, found:

525.2063[M þ H]þ

Fluorescence quenching experiments

Fluorescence quenching experiments were conducted

by adding solution of Schiff base copper(II) complex

X.-B. Yang et al.126
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(7) to the samples containing 32mg/mL EB, 4mg/mL

DNA at different concentrations (0–15.4mM). All the

samples were excited at 497 nm. Ethidium bromide

displacement assay was recorded on a Hitachi FL4500

spectrofluorimeter. Excitation of the sample was

carried out on 3 mL quartz cuvette with 497 nm

excitation light and emission was measured at 620 nm.

The buffer designated 0.01 M Tris–HCl (pH 7.4).

Ethidium bromide was dissolved in the buffer in the

concentration of 32mg/mL. 10mL highly polymerized

calf thymus type I DNA (1 mg/mL of nucleotide

concentration in the above buffer) was added to

provide a concentration of 4mg/mL and increasing the

fluorescence to measurement maxima. The test agent

in aqueous solution (depending on the compound)

was added in microlitre portions to reduce the

fluorescence of DNA-ethidium complex.

Plasmid DNA cleavage experiments

Plasmid DNA (pUC 19) cleavage activity of Schiff

base copper (II) complex (7) was monitored by using

agarose gel electrophoresis. In a typical experiment,

supercoiled DNA (pUC 19) (25mg/mL, 5mL) in

Tris–HCl (100 mM, pH 7.4) was treated with

different concentrations of Schiff base copper(II)

complex, followed by dilution with the Tris–HCl

buffer to a total volume of 17.5mL. The samples were

then incubated at 378C for different times, and loaded

on a 0.7% agarose gel containing 1.0mg/mL ethidium

bromide. Electrophoresis was carried out at 40 V for

30 min in TAE buffer and run in duplicate. Bands

were visualized by UV light and photographed

followed by the estimation of the intensity of the

DNA bands using a Gel Documentation System.

TBARS-method

The reaction mixture, in a total volume of 2.0 mL,

contained the following reagents at the final concen-

tration stated: complex 7 (0.5 mM); Tris–HCl buffer

(0.01 mM, pH 7.4) and CT-DNA (40mg/ mL). The

reaction mixture was incubated at 40 8C for 34 h. TBA

(0.2 mL of 6% (w/v)) was then added. The whole was

heated at 1008C, cooled, and the absorbance of 532 nm

was determined.

Results and discussion

Preparation of the Schiff base copper (II) complex

The synthetic route for the novel Schiff base copper

(II) complex (7) is shown in Scheme 1. Subsequent

selective formylation of 3-O-methoxy-17-deoxyes-

trone (3) via a Vilsmeir procedure could give

2-formyl-3-O-methoxy-17-deoxyestrone (4) 4 was

then deprotected by boron tribromide in 2788C to

give 2-formyl-17-deoxyestrone (5) Final condensation

between 5 and D-glucosamine readily afforded the

Schiff base ligand (6) as a yellow solid. The ligand was

allowed to react with cupric (II) acetate hydrate in

methanol overnight to give Schiff base copper (II)

complex (7) as a green solid. All the structures of new

compounds were confirmed by IR, HNMR, elemental

analyses and HRMS.

DNA binding and cleavage studies

Fluorescence spectroscopy. The binding ability of the

Schiff base copper (II) complex (7) to CT (calf thymus)

DNA was studied by fluorescence spectroscopy with

the use of ethidium bromide (EB). EB has weak

HO
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Scheme 1. Synthetic route of the target Cu (II) complex.
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fluorescence, but its emission intensity in the presenceof

DNA could be greatly enhanced because of its strong

intercalation between the adjacent DNA base pairs.

It was previously reported that this enhanced

fluorescence could be quenched, at least partly by the

addition of a second molecule [29,30]. The emission

spectra of EB bound to DNA in the absence and the

presence of the complex were given in Figure 1.

The additionof the complex toDNA pretreated withEB

caused appreciable decrease in the emission intensity,

which indicated that the DNA-bound EB fluorophore is

partially replaced by the complex.

According to the classical Stern–Volmer equation

[31]:

F0=F ¼ 1 þ K½Q�

Where F0 and F are the fluorescence intensities in the

absence and presence of the Schiff base copper (II)

complex (7), respectively, K is a linear Stern–Volmer

quenching constant, [Q] is the concentration of

complex. The fluorescence quenching curve of EB

bound to DNA by the complex were shown in

Figure 1. The K value for the complex is estimated as

2.4 £ 104 M21, which suggested that the binding of

the Schiff base copper (II) complex (7) with DNA was

a weak intercalative mode.

Cleavage of plasmid DNA. Besides the above methods,

interaction between the copper (II) complex (7) and

DNA was also investigated by the cleavage assay of

plasmid DNA (pUC 19). The cleavage of the plasmid

DNA was analyzed by monitoring the conversion of

supercoiled circular DNA (form I) to nicked DNA

(Form II) and linear DNA (Form III). The amounts

of strand scission were assessed by agarose gel

electrophoresis. The cleavage of DNA by different

concentrations of complex was initially studied for

48 hours. The amount of nicked DNA (Form II)

observed in agarose gel electrophoresis diagram

increased in accord with the change trend of the

concentration of complex in the reaction system

(Figure 2). Increasing the concentration of the

complex in the order of 0.1, 0.3 and 0.5 mM
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Figure 1. Fluorescence spectra of EB bound to CT-DNA in the

absence and presence of the Schiff base copper (II) complex (7).

[EB] ¼ 32mg/mL, [DNA] ¼ 4mg/mL, [complex 7] ¼ 0, 1.4, 2.8,

4.2, 5.6, 7.0, 8.4, 9.8, 11.2, 12.6, 14.0, 15.4mM, respectively;

lex ¼ 497 nm. The arrow shows the intensity changes on increasing

the complex concentration.

Figure 2. Effect of concentration of the Schiff base copper (II) complex (7) on the cleavage of pUC19 DNA (7.0mg/mL) in a Tris–HCl

buffer (100 mM, pH 7.4) containing DMF (8%) and at 378C for 48 h. (A) Agarose gel electrophoresis diagram: Lane 1, DNA control; Lanes

2–5, [complex 7] ¼ 0.1, 0.3, 0.5 and 0.7 mM. (B) Quantitation of % plasmid relaxation (Form II% and Form III %) relative to plasmid DNA

per lane.
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resulted in 46%, 64%, and 75% of nicked DNA,

respectively. Further increase of the concentration of

the complex led to the appearance of linear DNA (5%

of Form III, Figure 2, Lane 5).

Figure 3 illustrates the influence of reaction time on

the cleavage of the plasmid DNA. An increase in the

intensity of Form II was observed associated with the

increase of reaction time. Amount of nicked DNA

(Form II) was observed when the reaction time was 2,

4, 6, 8, 12 and 24 hours respectively. Supercoiled

circular DNA (form I) almost disappeared completely

after 48 h, and 96% nicked DNA and 3% linear DNA

(Form III) were found (Figure 3, Lane 7).

The preliminary mechanism of the DNA cleavage

by the Schiff base copper (II) complex (7) was studied

by using a series of scavengers that could inhibit the

reactive oxygen species. Plasmid pUC19 DNA was

incubated with complex in the presence of sodium

azide, DMSO and tert-butylalchol respectively, and

the results were shown in Figure 4. Among these

scavengers, t-butyl alcohol and NaN3 presented

observable inhibition on the DNA cleavage reaction.

However, DMSO did not show any inhibit ability

against DNA cleavage. Therefore, DNA cleavage

promoted by the complex might occur through an

oxidative mechanism instead of a hydrolytic mechan-

ism. In order to clarify the cleavage mechanism, we

used TBARS-method [32] to detect hydroxyl radical,

and an absorbance of 532 nm was observed obviously.

This result indicated that hydroxyl radical and singlet

oxygen was involved in DNA cleavage process.

In conclusions, this work described the synthesis,

characterization, DNA binding and cleavage abilities

of a new copper (II) complex (7) using Schiff base,

which was derived from estrone and D-glucosamine,

as ligand. The results showed that the Schiff base

copper (II) complex with hydroxyl-rich ligand is

capable of binding DNA by an intercalative mode, and

it could also cleave DNA efficiently without the use of

any exogenous agents. The DNA cleavage promoted

by the Schiff base copper (II) complex might occur

through an oxidative mechanism.
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